 ble Devices

CHAPTER 29

BOOLEAN SATISFIABILITY: CREATING
SOLVERS OPTIMIZED FOR SPECIFIC
PROBLEM INSTANCES

Peixin Zhong
Department of Electrical and Computer Engineering
Michigan State University

Margaret Martonosi, Sharad Malik
Department of Electrical Engineering
Princeton University

Boolean satisfiability (SAT) is a classic NP-complete problem with a broad range
of applications. There have been many projects that use reconfigurable compu-
ting to solve it. This chapter presents a review of the subject with emphasis on
a particular approach that employs a backtrack search algorithm and generates
solver hardware according to the problem instance. This approach utilizes the
reconfigurability and fine-grained parallelism provided by FPGAs.

The chapter is organized as follows: Section 29.1 is an introduction to the SAT
formulation and applications. Section 29.2 describes the algorithms to solve the
SAT problem. Sections 29.3 and 29.4 describe in detail two SAT solvers that use
reconfigurable computing, and Section 29.5 provides a broader discussion.

29.1 BOOLEAN SATISFIABILITY BASICS |

The Boolean satisfiability problem is well known in computer science [1]. Given
a Boolean formula, the goal is to find an assignment to the variables so that
the formula evaluates to true or 1 (it satisfies the formula), or to prove that
such an assignment does not exist (the formula is not satisfiable). It has many
applications, including theorem proving [5], automatic test pattern generation
{21, and formal verification [3,4].

29.1.1 Problem Formulation

The Boolean formula in an SAT problem is typically represented in conjunctive
normal form (CNF), also known as product-of-sums. Each sum of literals is
called a clause. A literal is either a variable or the negation of a variable, denoted
with a negation symbol or a bar (such as -y or v;). Equations 29.1 and 29.2
are examples of simple CNFs.

(Vi +v2 +v3)F1 vy +v3)(Vy +v2 +73) (V2 +V3) {29.1)

614

Chapter 29 ® Boolean Satisfiability: Creating Solvers

or
(v Vv V v3) A (Rv Vg Vyg) A (vi Vo V=v3) A (—va v —v3) (29_2)

Each sum term, such as (vi +v3 +v3), is a clause. In the clause, vi or —w is
called a literal, It can be easily tested that v; = 1,v, = 1,v3 =0 is a solution to the
problem.

The SAT clauses represent implication relationships between variables. To
satisfy the CNF, each clause should be satisfied (i.e., at least one literal in each
clause should be 1). For a given partial assignment, if only one literal in a
clause is not assigned but all others are assigned to 0, the unassigned litera]
is implied to be 1 to satisfy the clause. The first clause in equation 29.1 contains
three possible implications. If vi = 0 and v = 0,v3 is implied to be 1, denoted as
—v1—ws3 Dva. Similarly, vi =0 and v3 =0 imply v2 =1, and vy =0 and vz =0 imply
vy = 1. Such implications can be used to construct powerful logic expressions.
They are also the key to SAT-solving algorithms.

29.1.2 SAT Applications

The many applications of SAT include test pattern generation [2] and model
checking [3, 4]. The logic relations of a digital circuit can also be represented
in SAT CNF. Each logic gate is represented by a group of clauses, with each
signal represented by a variable with two possible values, 1 or 0. A circuit is
represented by a conjunction of clauses representing all gates in the circuit.
What follows is the transformation from simple gates to clauses:

AND gate, z <=ab, maps to (a+=2)(b+—-z)(ma+-b +2)

NAND gate, z <=—(ab), maps to (a+z){b+2)(ma +—b+—7)

OR gate, z<=a +b, maps to (ma+2)(b+z)a+b+—z)

NOR gate, z <=—1(a +b), maps to (ma+-z)(~b+z)a+b+z)

XOR gate, z<=a &b, maps to (—a +mbisag)(=a+brz)a+—b+)a+b+z)
Buffer gate, z <=a, maps to (—a +z){a+-z)

Inverter gate, z <= —a, maps to (@ +z)(—a +-1Z)

SAT can be used in test pattern generation or to verify the equivalence of
two combinational circuits. The circuit construction is shown in Figure 29.1.
In equivalence checking, the two representations of the circuit are fed with
the same primary inputs signals, and the corresponding primary outputs feed
into an exclusive-or (XOR) gate. If an assignment of primary inputs can be
found such that any of the XOR gates has 1 as an output, the circuits are
different. If no such assignment can be found, the circuits are functionally
identical.

Yor test pattern generation, instead of using two representations of one
circuit, we use two copies of the same circuit. However, one copy has a fault
introduced into the design, which we can detect by searching for some pat-
tern of inputs. In this case any input pattern that can generate a 1 on an XOR
output is a test for that fault. If no such assignment is possible, that fault is
untestable.

(29.2)

1 OF —wp s
ution to the

ariables. To
eral in each
literal in a
igned literal

9.1 contains
, denoted as
vy =0 imply
expressions,

and model
represented
5, with each
A circuit is
- the circuit.

a+b+-2)

livalence of -
Figure 29.1.
re fed with
»utputs feed
suts can be
circuits are
functionally

lons of one
has a fault
r some pat- .
on an XOR
that fault is =

—>— =Ds
P

29.2 S5AT-solving Algorithms 615

Primary inputs Primary outputs

Reference

circuit

[
%

P N Circuit
under test

FIGURE 28.1 ® Test pattern generation.

29.2 SAT-SOLVING ALGORITHMS -

29.2.1 Basic Backtrack Algorithm

There are many algorithms to solve the SAT problem. They can be divided
into two categories: complete and incomplete. A complete algorithm guarantees
either to find a solution on termination or to prove that there is no solution.
Complete algorithms typically employ a methodical search of the variable
assignment space. For hard problems, the runtime may well exceed accept-
able levels. An incomplete algorithm does not guarantee to find the solution and
typically involves greedy or randomized search [22]. It can often find a solution
of an easy problem very quickly, but if it fails to do so within a given time, it
does not prove that no solution exists. Many applications require a complete
algorithm to provide a definite answer, so this chapter concentrates on such
algorithms for SAT. _

An early SAT algorithm was proposed by Davis and Putnam [5]. Like theirs,
most complete SAT algorithms are based on backtrack search [6-9], which is
similar to depth-first search in traversing a tree. The pseudo-code of the basic
algorithm, shown in Figure 29.2, starts with an empty variable partial assign-
ment (i.e., every variable value is assumed to be unknown, or free). The search
level is increased by branching—that is, assigning a value for a free variable.
The algorithm checks if the incremented partial assignment can be part of a
solution. If not, we say a conflict is detected. If there is no conflict, the algorithm
will choose another free variable and branch on it; if a conflict is detected, it
will backtrack to the most recently assigned variable and choose the opposite
value. All decisions made after that backtrack point will be undone.

616

Chapter 29 * Boolean Satisfiability: Creating Solvers

Solve_SAT()

{

assign all variables to unknown;
while (true) {

if

{implications force an unknown variable to a specific value)

set that variable to that specific value;

if

(the current assignment has a conflict) {

undo all implications and branches up to most recent untoggled branch;
if (all branches undone)

return No_solution;)

toggle value assigned Lo the variable of last untoggled branch;

}

if (no unassigned variables remain)
return Solved;

} else {
start new branch by assigning a value to the next free variable;

}
}
}

FIGURE 29.2 B The basic backtrack algorithm to solve SAT.

The algorithm has two possible terminating conditions. If all variables values
are known and the formula is satisfied, a solution is found. If all branches fail
io find a solution and the algorithm must backtrack beyond the first branch
variable, there is no solution and the formula is unsatisfiable.

The key to the efficiency of the backtrack algorithm is effectively pruning the
search space. Early detection of a conflict assignment avoids useless searches
along this branch. The following are some basic rules and techniques used in
the algorithm. At each stage of the search, a variable can have one of three
possible values: 1, 0, and free {unassigned).

If at least one literal of a clause evaluates to 1, this clause is satisfied. There
is no need to check other literals in the clause.

If all literals of a clause evaluate to 0, the partial assignment is a conflict
and cannot be part of the solution.

If only one literal of a clause is free and all other literals evaluate to 0, the
free literal is implied to be 1. This is called unit resolution or implication.
Implication is a powerful mechanism because it can deduce implied values
of variables not yet branched on. However, it can create another case of
conflict if a variable is implied by two clauses to be of opposite values.

If all of the literals of a free variable in the as yet unsatisfied clauses are all
of the same polarity (i.e., inverted or not inverted), a value can be chosen
for this variable that safely satisfies these clauses.

_ Because the variable ordering of branches has a large impact on the effi-

ciency of the algorithm, different dynamic or static ordering schemes have
been investigated. A simple heuristic orders the variables based on the
number of clauses they appear in. A variable with the most appearances

T

inch;

ables values
ranches fail
first branch

pruning the

>ss searches

ues used in
me of three

isfied. There

is a contflict

1ate to 0, the
implication.

aplied values

sther case of
‘te values.

lauses are all
in be chosen

i on the effi-
chemes have
yased on the
appearances

29.2 SAT-solving Algorithms 617

often has more influence than others. Therefore, branching on it early
typically prunes the search space more quickly.

A basic algorithm can use a static variable ordering. It can also use a fixed
branching scheme, such as always branching with value 1, in which, after each
branch or backtrack, implication is checked exhaustively. This basic algorithm
corresponds to the reconfigurable SAT solver described in Section 29.2.

29.2.2 Improving the Backtrack Algorithm

Among the advanced features explored to further improve the efficiency of the
backtrack search algorithm [6, 7], an effective one is learning based on conflict
analysis. With the search algorithm moving back and forth by branching and
backtracking, similar spaces are explored many times. Consider a problem, as
in equation 29.3, where some of the clauses are

(i + v + V) (G + v+ V(Y + = v) (v = v) (29.3)

The variable v; is branched to be 1, and many other variables may have been
tested before v; is branched on. When v; is branched on and 1 is tested, a conflict
on vy, is detected. Then v; is switched to 0, which again causes a conflict. Thus,
the algorithm will backtrack to the previous branch variable. However, switching
variable assignments other than v; will not help. The algorithm may reenter the
same region many times before it backtracks to v;. Conflict analysis would be
helpful in this situation.

A new variable value is implied by the value choices of all other literals in this
clause being 0. Each literal has obtained its value either from branch decisions
or from earlier implications. Therefore, we can create a transitive implication
graph where an implied variable is ultimately implied by a set of branch deci-
sions. A conflict is detected when a variable is implied to be of opposite values. It
can be identified by backtracking the implication graph to identify the complete
set of branch assignments that led to it. This set of decisions is responsible for
the conflict.

In the example just given, the first conflict is caused by v; =1 and v; = 1. Anew
clause can be derived as (—v; +—;). This is a redundant clause that can be added
to the formula without changing the solution. It can also be viewed as applying
the following consensus theorem to clauses 3 and 4 in equation 29.4:

(x+y)(x+)=(x+)x+ Dy +2) (29.4)

With the conflict on vj = 1 detected, it can be interpreted as v; is implied to
be 0. In this case, it is implied by v; = 1. Another round of implication will
render a conflict because of the first two clauses in the original formula. From
the second conflict, a new clause can be derived as (—v; +v;). Combined with
the conflict analysis result of the previous conflict, the resulting clause is (—v;),
which dictates v; = 0.

618

Chapter 29 ®» Boolean Satisfiability: Creating Solvers

The algorithm should instead directly backtrack to v;, in what is calleq
nonchronological backtracking by Marques-Silva and Sakallah [6]. The new
clause can be added to the problem and thus help prune the future search space,

This example is extrémely simple, but the principle is applicable to al]
conflicts and can reduce runtime by several orders of magnitude on many
problems. For example, for the AIM200 group of problems, GRASP takes
10.8 seconds, whereas many other SAT solvers take more than 10,000 seconds.
However, because of the heuristic nature of the algorithms, they show different
performance characteristics with different problems.

Learning also has its trade-offs. Every conflict will generate one reduridant
clause, and storage will explode if every such clause is recorded permanently,
Heuristics for discarding Jong or unused redundant clauses can keep the storage
size manageable and still achieve significant speedup.

29.3

A RECONFIGURABLE SAT SOLVER GENERATED ACCORDING
TO AN SAT INSTANCE

This section presents an example of generating an SAT solver according to the
SAT instance [10-12]. That is, instead of creating a generic, hardware SAT solver,
we generate a new configuration for the reconfigurable computing machine for
each SAT equation being solved.

29.3.1 Problem Analysis

A hard SAT problem can take a very long time to solve, limiting the application
of the formula and the solvers’ powerful formalism. Therefore, we will look at
the use of reconfigurable computing techniques to accelerate SAT solutions. For
this it is necessary to compare the relative merit of FPGAs and CPUs and look
at the characteristics of SAT algorithms to identify an efficient solution.

FPGAs allow the full customization of control and datapaths. In particu-
lar, they make it efficient to perform bit-level operations. Also, by allocating
more computing resources for bottleneck operations, they can provide massive
parallelism and deep pipelining for suitable applications. However, FPGA clock
rates are lower than those for microprocessors of the same technology genera-
tion, so raw chip performance may suffer.

Two opportunities for parallel processing in the SAT algorithm stand out, one
of which is the parallelism in the vast search space. For a problem with » vari-
ables, there are 2" possible assignments (though with the backtrack algorithm
pruning the search space, that number is actually much smaller). It is possible
to split at the branch choices and allocate each subspace to its own processor
However, because the search space is typically unbalanced, such parallelization
requires rebalancing the load and this would be very complex to implement
in hardware. Another source of potential performance gain is implication and
conflict checking. Whenever a new value is assigned to a variable, all clauses

t is called
. The new
arch space,
able to all
s on mahy
ASP takes
10 seconds.
w different

reduridant
rmanently,
the storage -

ling to the:
SAT solver,
1achine for

ipplication
vill look at -
ations. For
s and look
on.

n particu-
allocating .
le massive =
PGA clock
gy genera-

id out, one
rith n vari-
algorithm
is possible
processor.
lelization
implement -
:ation and
all ¢lauses

29.3 A Reconfigurable SAT Solver 619

containing the variable should be checked for implication and conflict. New
implied values will trigger further checking and implication. Additionally, the
variables are Boolean and suitable for low-level processing by logic circuits, and
thus implication and conflict checking are good candidates for hardware accel-
eration. Tt has also been confirmed through software profiling that implication
and conflict checking take up the majority of computing time.

The basic backtrack search includes branch, implication, and backtrack func-
tions, which are relatively simple and can be implemented with finite-state
machines. Many projects implement a full SAT solver on one or multiple FPGAs.
The next section describes one of them.

29.3.2 Implementing a Basic Backtrack Algarithm
with Reconfigurable Hardware

Since implication and conflict checking are time-consuming processes, they are
good candidates for hardware acceleration. Checking all clauses in parallel is
one approach enabled by reconfigurable computing techniques. The circuit used
for such parallel checking is presented as follows.

During the search, a variable can take one of three possible values: unknown,
1 (true), and O (false). A 2-bit encoding, denoted (v,¥), is used for the three
variable values because it can conveniently represent them: (0, 0) is an unknown
(free) variable; (1, 0) is value 1; and (0, 1) is value 0. The fourth combination,
(1, 1), is used for conflict. The 2-bit encoding can be easily used for implication
as well. For example, a clause with three literals (v; + —v; +v;) represents three
possible implications that can be expressed with the 2-bit encoding as logical
assignments, as shown in equation 29.5:

Vi <= V;'Tjk
Vi <=V _ (29.5)

Vi <='17Z'V]'

When a literal appears in multiple clauses, its value is 1 if any one of the
clauses implies it to be 1. The general form can be written as

Vinew <=)Y (I1 Vi IT VZ)

each clause v; each uninverred each inverted

appears in literal vy, literal =11y

Vinew <=)} (IT Vi ITv)
each clause ¥; each uninverted each inverted

appears in literal vy, literal —wy

The summation ¥, is a logic OR over the set of clauses in which the implied
literal appears. The production I] is a logic AND over all other literals in the
clause. Note that the literal in the formula is inverted from the one in the clause,
meaning that the implication is effective if and only if all other literals are known
to be 0. With this formula, a complete CNF can be converted to circuits that
evaluate all possible implications in parallel.

620 Chapter 29 = Boolean Satisfiability: Creating Solvers
p
V2
" —— >
v ‘
1 =S -
=k — >
V3
—L/ >
va an @ _D,_/ Lcontfiict
|
- By — R
B Mo a ——T >
V6 | P
CLR Q@
Lchange
V1 _set
- i) >_j > —L >
V1'_set ’
r
Gclear

E

FIGURE 29.3 ® The implication circuit for one variable, V1.

The implication circuit for V1, shown in Figure 29.3, corresponds to the
partial CNF of (v; +—v2 +m3) (W1 +v2 + v Y +v2 +vs) (v vy +-vg), and is
directly derived from the implication equation. A variable may assume a value
because of either a branch decision or implication. An OR gate adds the assigned
value. Since a newly implied variable may take part in generating new implica-
tions, registering the newly implied values allows implication to propagate one
level in each clock cycle and avoids combinational cycles. To determine when
implications have settled, an XOR gate checks the difference between the cur-
rent and the next value. An AND gate checks if both literals of a variable are
assigned to 1. If such a situation exists, the conflict (also called contradiction)
signal is raised.

The other part of the algorithm is the control for the backtrack search.
A distributed control architecture is used, with each finite-state machine (FSM)
controlling one variable. Using a predetermined variable ordering, the architec-
ture can be implemented by a linear array of communicating FSMs, as shown in
Figure 29.4. Other than a few global signals, each FSM communicates only with
the two neighboring FSMs. During the SAT-solving process, only one variable is
active in terms of branching and backtracking. Its active status is represented
by an active token. Two wires connect each pair of FSMs to pass the active
token back and forth. Only one variable is the owner of the token at any given
time. .

" In addition to the basic clock and reset signals, there are three global control
signals. Geconflict is asserted when a conflict is detected. It is the wide OR
funciion of all local conflicts, Lconflict. A local conflict is asserted when both

U

- ntradiction)

Us

_conflict

change

J

l

nds to the
—|V6)) and is
ume a value
he assigned
ew implica-
ypagate one -
‘mine when
:en the cur:
variable are:

ack search.
‘hine (FSM)
he architec-
as shown in’
=s only with
2 variable i
represented.
s the active
it any given

sbal control
1e wide OR
| when both

29.3 A Reconfigurable SAT Solver 621

I]
Gchange Geonflict Gdlear

bt
nA At
% jﬁﬁ
L| Gehange Lchange .| Gchange. Lchange .| Gchange Lchange
— Gceonflict |conflict ‘— Goonflict Leconflict L1 Geonflict Lconflict
— Gclear Lolear] Gelear Lclear — Gclear Lelear
E_il E_or E_il E_or E_il E_or
E o E_il E_ ol E_il E_ol E_il
Y1 ¥ Vit

FIGURE 29.4 » The global topology for a basic SAT solver circuit.

v; and v; are assigned or implied to be 1. Gehange is asserted when any variable
has changed value. It is the wide OR function of all local changes, Lchange.
A local change is asserted when v, is different from v; or when ¥,
is different from v;. Gelear tells each state machine to clear the implied
values. It is issued when the algorithm needs to backtrack and erase earlier
implications.

With the external interface defined, each FSM should hold the assigned
value, the implied value, and its state of backtrack search. The state machine is
designed as registers for the implied value and an FSM combining the assigned
value and state in the backtrack search. The state diagram of the latter FSM,
shown in Figure 29.5, contains five states:

» Jdle: This is the initial state, in which the internal variable value is (0, 0).
The FSM will stay in the idle state unless it has received the active token
from its neighbor through branching or backtracking. When the token is
received, if this variable already has an implied value, there is no need to
branch, and the FSM will simply pass the token to the next variable at
the next clock. If this variable has no implied value and the token has
been passed from the left, it will branch and choose the branch value as
1 (the active 1 state).

® Active 1: This state is the result of branching from the idle state, in which
the variable value is chosen to be 1. The new value will be available for
implication and conflict checking. The FSM will keep the token until
there is no more change or until a conflict is detected. In the case of no
conflict, it will pass the token to the right and will transition to the

622 -Chapter 29 » Boolean Satisfiability: Creating Solvers

Geonflict/send token to left and clear

E_il and implied/send
token to right

Gehange and nat
Geonflict/nothing

Gehange and not
Georflict/nothing

Not E_il and not
E_ir/othing

E_il and not implied
/nothing

Geonflict/clear

Active 1

Not Gehange and not Geonflict/
send token to right Not Gehange and
not Geonflict/send

E_jr/send token token to right

to left

Passive 0

o

not E_jr/nothing

Not E_jr/nothing
E_ir/send token to left and clear

FIGURE 29.5 m The FSM associated with one variable,

passive 1 state. If a conflict is detected, it will transition to the active 0
state and restart the implication and conflict checking.

® Active 0: This state is the result of a conflict in the active 1 state or of the
token being passed to passive 1 by backtracking. The variable value is set
to 0. Implication and conflict are checked. If there is no conflict, the FSM
passes the token to the right and transitions to passive 0. If there is a
conflict, it will transition to the idle state and pass the token to the left.

w Passive I: This state is the result of branching further from active 1. If
the FSM receives a token from the right because of backtracking, it will
transition to active 0.

B Pgssive 0: This state is the result of branching further from active 0. If
the FSM receives a token from the right because of backtracking, it will
transition to idle and pass the token to the left.

With these FSMs logically forming a linear chain, the branching of the
algorithm corresponds to passing the token to the right and performing imph-
cations during the process. When a conflict is detected, backtracking is needed.
Backtrack switches a value from 1 to 0. If it is already 0, the token is passed
to the left. Whenever a conflict is detected, all of the implied values are cleared
by the global clear signal and reset to free. The termination condition is easy
to test: If the token is passed to the left of the first variable, the problem is
unsatisfiable; if it is passed to the right of the last variable, a solution has been
found. In addition to the regular problem-solving mode, the linear chain of vari-
ables can also be configured as a shift register. When a solution is found, it can
be shifted out as a bitstream.

e and
Vsend
it

\

_irnothing

active 0

2 or of the
alue is set
t, the FSM
reisa

the left.
ve 1. If

g, it will

ve 0. If
g, it will

ng of the
ing impli-
is needed.

re cleared
on is easy
roblem is
i has been
in of vari-
ind, it can

is passed -

29.3 A Reconfigurable SAT Solver 623

At the time of the design of this SAT solver (1997-1998), a single FPGA chip
provided a very limited number of logic gates, and so for typical problems a
multi-FPGA solution was needed. The algorithm was implemented on an IKOS
(now part of Mentor Graphics) VirtualLogic SLI Emulator, which contained one
to six FPGA boards, each containing 64 Xilinx XC4013E FPGA chips to form an
8 x 8 mesh. Thus, it provided the logic capacity to handle a midsize to large SAT
problem. While the FPGA itself could support a clock rate of about 20 MHz, the
Ikos system used a time-multiplexing IO scheme called VirtualWire to overcome
the pin limitation (see Section 6.4). Thus, the system clock rate was reduced to
the 1-MHz range. An HP logic analyzer/function generator was connected to
provide the initial input signal and collect the result.

To provide perspective, in 1992 the mainstream FPGA XC4013E had 1363
logic cells. In 2006, the large XC4VLX200 F PGA had 200,448 logic cells
(i.e., about 146 times the logic capacity), which was more than what two big
Ikos boards could provide.

To solve an SAT problem on this platform, the following steps are needed:

1. Generate VHDL. A software tool written in C++ reads in the problem CNF
file and generates the VHDL code that models the SAT solver circuit. The
FSM is manually coded in VHDL and reused for each SAT problem.

2. Compile the FPGA. The VHDL is compiled to bitstream files for program-
ming the FPGAs. For a single FPGA implementation, this can be done by
the FPGA tools. For the Tkos emulator, in contrast, this process takes three
steps: (1) the design is synthesized into a netlist and partitioned to multiple
FPGAs by the IKOS tool; (2) the partitioned netlist is generated; and (3) the
netlist is compiled by Xilinx tools into bitstream files. The main function
of the Xilinx tools is placement and routing.

3. Configure the FPGA. The bitstream is downloaded to the FPGA board, and
the FPGA is configured with these files.

4. Run the problem solver in the FPGA and load the result. The logic ana-
lyzer/function generator creates the initial signals to start the computa-
tion. When the problem is solved, the solution is shifted out, where it can
be captured by a logic analyzer.

The runtime performance of the FPGA SAT accelerator is shown in
Figure 29.6 as a histogram of speedup ratios. This test was carried out in
1998 using the problem set from the DIMACS SAT challenge benchmark. The
software runtime basis was obtained by running GRASP with parameter set-
tings close to those of the basic backtrack algorithm. GRASP was run on a Sun
5 workstation with a 110-MHz processor and 64 MB of RAM. The hardware
performance was normalized to a 1.33-MHz system clock rate, which is repre-
sentative of implementations on the IKOS emulator. In the figure, the x-axis is
the ratio of software solver runtime to reconfigurable hardware runtime. 1t does
not include the compilation time and the time to configure the FPGAs.

As we see from Figure 29.6, the result indicates that even though the
reconfigurable solution has a clock rate 82 times slower than that of the
microprocessor-based system, it can still achieve 20 times or greater speedup

624

Chapter 29 » Boolean Satisfiability: Creating Solvers

Instances
=
1

0-1
1-10
1020
20-30
3040
40-50
50~60
60-70
70-80
80-90
90-100
00-110
10-120
20130

130-140
190-200

140150
150-160
160-170
170-180
180-190
200-...

——

Speedup ratio

FIGURE 29.6 m A performance comparision of the FPGA SAT accelerator and the software version
implementing the same algorithm as hardware.

for many problems. Tt should be noted that the comparison is based on run-
time alone. The reconfigurable approach suffers from compilation overhead,
which in 1998 required hours to perform logic synthesis and placement and
route for the FPGAs. Current FPGA tools can perform such compilation within
a minute. Ways to ameliorate compilation issues will be discussed in later
sections.

For an understanding of the speedup results, Table 29.1 shows the speedup
ratios for different problems. The average number of clause evaluations per
cycle serves as a rough measure of the utilization of parallelism. It is defined
as the number of clauses that contain at least one literal from the variables
newly assigned in the previous clock cycle. There is a correlation between par-
allelism in clause evaluation and speedup ratio. Another factor in the speedup is
that custom hardware effectively reduces a complex operation into single-cycle
implication. :

29.3.3 Implementing an Improved Backtrack Algorithm
with Reconfigurabie Hardware

The example in the previous section shows the performance benefit of recopfi-
gurable computing. However, the hardware solution was implemented with the

2 version

on run-
rerhead,
ent and
1 within
in later

speedup
ons per
defined
ariables
:en par-
sedup is
le-cycle

reconfl-
vith the

29.3 A Reconfigurable SAT Solver

TABLE 29.1 ® Speedup ratios for different problems

. Number of Average clause Clogk rate Speedup
Problem clauses evaluations/cycle (MHz) ratio
aim-50-2_0-yes1-2 100 7.1 1.78 44,5
aim-100-2_0-yes1-4 200 8.4 0.95 209
aim-200-6_0-yes1-1 1200 62.3 0.92 101
dubois20 160 8.0 1.78 13.9
hole7 204 18.3 1.78 44.5
hole8 297 21.9 178 45,6
hole@ 415 25.9 1.57 40.2
holel0 561 30.1 1.48 41.4
ii8a2 800 15.8 1.07 923
par-8-1-c - 254 29.4 1.57 174
par-16-1-c 1264 60.4 0.99 153
pret60-40 160 8.5 2.05 39
55a0432-003 1027 11.0 0.95 24.7

625

basic backtrack algorithm, and improvements to the algorithm have brought

“thousands of times speedup in the software solution. The following example

shows a more sophisticated backtrack algorithm with reconfigurable computing.
As demonstrated by GRASP, conflict analysis helps identify the true reasons for
conflict. Nonchronological backtracking and learning based on the analysis can
greatly improve search efficiency.

Knowing that the hardware can perforin fast implication checking, an
alternative to conflict analysis-based backtracking was developed through trial
assignments. When a conflict is detected, there are two possible scenarios
regarding the most recently assigned variable. In the first, the variable has just
been assigned by branching—it will be assigned the alternative value and tested.
In the second, the variable has been assigned to an alternative value because
of previous conflicts, so backtracking is needed. GRASP shows that conflict
analysis can identify the reasons for conflict and may backtrack multiple levels,
saving search time.

In the reconfigurable hardware approach, trial backtrack is performed. The
algorithm moves back one decision level at a time and flips the assigned
variable. Unlike a real backtrack, the most recent assignment is not turned
to unknown. Instead, two implication/conflict tests are run for both value 0
and value 1. If both lead to conflict, we can trial-backtrack another level. If
either case leads to no conflict, we have seen the real backtrack destination
and the search reverts to regular search mode. This leads to much improved
performance, with the only drawback being an increase in finite-state machine
complexity.

Figure 29.7 is a diagram of the state machine for this enhanced algorithm.
It is an extension of the basic backtrack algorithm, but with nine states instead
of five.

626 Chapter 29 ® Boolean Satisfiability: Creating Solvers

Not Gehange and not Geonflictnothing

Gehange and not
Geonflictnothing

Gehange and not
Giconflict/nothing

Geonflict/Clear

Gconflict/clear

Geonflict/send token
to left and clear

not Gehange and not

E_ir/send token to left Geonflict/nothing

Gehange and not
Goonflictngthing

&,

Not Gehange and not
Geonflict/send token to right

Not E_il and not

E_ir/nothing E_il and not

implied/nothing

Gonffict/clear

Acitve 1

Gchange and not
Geonflict/nothing

E il and implied/send
token to right

Not Gehange and not
Geonflict'send token to right

Not E_ir/nothing

Passive 0

Not E_ir/nothing

D

Not Gehange and not
Geonflict/send token to le

E_ir/niothing

Not Gehange and not
Gceonfict/send token

Gchange and not
to right and clear

Geonflictnothing

Geonflict/nothing

Gceonflict/send foken
to left and clear

Gchange and not
Geonflictnothing

E_irfsend token 1o left and clear

FIGURE 29.'/ m A state diagram of the improved algorithm.

m Jdle: This is the state before branch; it is also the state if the value is
already determined by implication.

8 Active 1: This is the state after branch on value 1.

= Active D: This is the state after backtrack on the branched value 1. When
a conflict is detected, instead of a simple backtrack, a new phase of
testing is added. It passes the token to the left and transitions to leaf 1.

® Passive I: The variable value is 1 because of branching, and active control
has been passed to the right in branching.

W Passive 0: The variable value is 0 because of backtracking, and active
control has been passed to the right in branching. '

l

not
en to right

ing

1e is

1. When
» of
leaf 1.

re control

ctive

29.4 A Different Approach to Reduce Compilation Time 627

® Leqf 1: Leaves 1 and 0 are testing states after conflict is detected with
value 0. If the testing settles with no conflict, we have found the most
recent branch assignment that contributes to the conflict. The FSM will
backtrack directly to that variable. If a conflict is detected, it will try a 0
value in the leaf @ state.

8 Leaf 0: This is also a testing state. If the testing settles wrch no conﬂ1ct
we have found the most recent branch assignment that coniributes to the
conflict. The FSM will backtrack directly to that variable. If a conflict is
detected, it will switch to 1 and continue the testing.

m bkOa: This state works in coordination with the leaf 0 state. It is reached
through testing backtrack to the passive 1 state. If the test results in no
conflict, this variable is the backtrack target.

» DbkOb: This state works in coordination with the leaf 1 state. If the test
results in no conflict, this variable is the backtrack target. If the conflict
persists, FSM passes the token to the left and returns to idle.

29.4 A DIFFERENT APPROACH TO REDUCE COMPILATION TIME

AND IMPROVE ALGORITHM EFFICIENCY

A practlcal issue in creating an FPGA- based SAT solver circuit optimized to
a specific problem instance is the time needed to generate the circuit. While
the VHDL for the solver circuit can be generated in less than a second,
the process of FPGA compilation is quite long. It can take at least 10 to
20 minutes to compile the mapping for a single FPGA. FPGA hardware and soft-
ware have improved to the point that a compilation may take a few minutes;
however, compilation time still cannot be ignored. In the next section we
describe an SAT solver w1th reduced compllanon time and a further improved
algorithm. ‘

29.4.1 System Architecture

The solution described in the previous section directly maps the SAT formula
into an SAT solver circuit. It does, however, have limitations:

m The circuit design does not take into account any physical design issues.
The implication circuit includes connections between state machines that
may be placed far away from each other. There are also wide OR gates
that generate global control signals. The solver requires massive routing
resources, and the system clock rate is low.

® The circuit is a complex netlist with little locality, and it takes a long time
to compile into FPGA configurations. -

m The solver implements the basic backtrack search algorithm. Although

' an improved nonchronological backiracking was implemented, the
architecture does not support learning.

628

Chapter 29 = Boolean Satisfiability: Creating Solvers

To deal with these issues, we developed a follow-on SAT solver with lessong
learned from the previous design [13, 14]. The following characteristics of the
new design address the previous design’s shortcomings:

» Structural regularity is a high priority. A regular structure allows easier
physical design. Specially designed processing elements allow regular
placement and distributed processing. Overall, modular approaches can
improve clock speed and allow fast circuit generation.

» Shared-wire global signaling is used to distribute data across the system.
For example, a pipelined ring-style bus replaces the random
interconnects. The bus allows a faster clock rate, 2 low pin count
between chips, and a regular structure. .

» The algorithm control is separated from the parallel data processing in
the architecture. This allows the development of sophisticated control
algorithms.

s Algorithm improvements have been. implemented. In addition to
implication, the circuit is capable of conflict analysis. Therefore,
nonchronological backtracking and learning can be implemented.

The core of the new design is an optimized pipelined bus system, in which
the bus width can be customized according to the hardware resources. The
bus includes both control and data bits. The control bits notify the processing
elements of actions to take; the data bits utilize a fixed sequence to encode the
variable values. The system uses the same 2-bit encoding for variable values.
Thus, a width of 32 data bits supports 16 variables. Also, the variables are
encoded with a fixed order. For example, if at clock 7 the variables are vy through
v1g, then, at ¢+ 1, the variables are vi7 through vs;. In n clock cycles, w*n vari-
ables pass through a stage, where 2w is the bit width of the data bus. The bus
only propagates the variable value. There is no need to propagate the variable
identification because it is inferred from the sequence. At each stage, the data
bit may be OR’ed with a local signal, allowing it to be set to L.

Figure 29.8 shows the global topology. The bus width is 40 bits, with 32 bits
for data and 8 bits for control. Figure 29.9 shows one stage of the bus. The
value is accessible to the PE as vi_in. The propagated value can be set or
reset through the signals vi_set and Vi_reset_n. The main control block is
the core of the algorithm control. It maintains an internal copy of the variable
states and controls the backtrack algorithm.

40 40 a0 | 40 40

A=t Main —7—"| PE1 7" PE2 [PE3| =« * e+ |PEn

FIGURE 29.8 ® The global topology for processing and communication in the new SAT
architecture, with improved conflict analysis and nonchronological backtracking.

h lessons
- ¢cs of the

easier
sular
1es can

system,

sing in
mirol

in which
rces. The
rocessing

le values
ables are

1 through

W *n vari-

. The bus -
2 variable .
, the data -

th 32 bits
bus. The
be set or

1 block is
e variable.

40

acode the

29.4 A Different Approach to Reduce Compilation Time 629

SET SET

D o} D Q
CLR 6 CLR 6
Vi_set Vi_reset n
Vi_in

FIGURE 29.9 m One stage of the pipelined bus.

Multiclause modules can be placed in one processing element (PE). The total
number of PEs depends on the total number of clauses in the CNF and the
number of clauses per PE. Each PE contains a resettable counter to count the
sequence of variables. The clause modules use the counter to identify variables
on the bus.

A clause module holds the data corresponding to one clause. To simplify the
hardware design, a 3-SAT formula is assumed (i.e., each clause has at most three
literals). This assumption does not lose generality, because any SAT formula can
be transformed into a 3-SAT formula in polynomial time by introducing new
variables and breaking up long clauses. Each clause module has the following
functions:

» Implication. Each clause should check for implication and put implied
values onto the bus.

» Conflict analysis. This is the reversal of the implication process. Given an
implied variable, the module finds the variables that lead to the
implication.

w Siorage and interface. The module interfaces with the bus, taking
commands and variable values from it. Tt also sends new values and flags
for value updates to the bus. It needs to store the values of variables
related to the clause as well as the implication information.

Clause modules have three basic states: reset, implication, and analysis. The
reset state will reset variables to (0, 0) if the corresponding value on the bus
is (0, 0) and the state bus dictates reset. It is used during backtrack to undo
the decisions and implications made after the backtrack point. Implication uses
the same algorithm defined in the previous section. However, because the varia-
ble value is propagated on the bus, the clause module should also hold variable
values locally. The data latching takes place when the PE counter matches the
count stored in the module. The implied value is also stored locally until the cor-
rect bit passes through. The module will update the bus value at that moment.
An internal flag denotes the implied value. It will be used in the analysis phase.

The analysis phase is the reverse of implication. The goal is to find the list
of branch decisions that are transitive predecessors. This can be easily obtained

630

Chapter 29 = Boolean Satisfiability: Creating Solvers

if the history is stored. When the clause module is in analysis mode, it will be
idle if it has not generated an implication. If it has generated an implication
it will check if the implied literal is asserted on the bus during analysis. If so:
the module will reset this literal on the bus and set the complement of other
literals in the clause. In this way it signals to the units that generated the values
of these other literals. For example, in the clause (v; +v; +-wy), if v; is implied,
the implying predecessors are v; =0 and v¢ = 1. These variables may in furn be
implied by other variables. '

The main control unit handles flow control and decision making. It has the
following major states and functions:

» Branch. Branch chooses the next free variable and assigns a value to it.
Using a fixed variable order and always choosing 1 simplifies the
function. A priority encoder can quickly select the first row with a free
variable and assign it to 1. The branch state is associated with the first
round of broadcasting the variable values. The next state is implication.

» [mplication. The controller checks for conflicts, in which case it performs
conflict analysis. Alternatively, if in two cycles of data movement no new
values have been found, all iterative implications have settled. It then
performs the next round of branching. .

» Conflict analysis. This step identifies the variable assignments leading to
+he conflict. The control bus shows the analysis state. The conflict
variable is set to (1, 1), while all other variables are set to (0, 0). When a
clause that implied a variable currently asserted on the bus is found, that
implied literal is reset to 0 and the implying literals are all set to 1.

When a conflict arises from a branch, a list of variable assignments contribu-
ting to it can be collected through conflict analysis. The current branching vari-
able is considered to be implied by this set of literals. The implication is stored
in the main control unit and can be expressed as a redundant clause. For exam-
ple, if assignments v; =1, vj=1,ve=1v=1 lead to conflict, the new clause
is (—v; +wp+ Vg +—wy). If v; is the current branch variable, it is implied to
be 0 by this new clause. Conceptually, the new value is not a branch decision.
Rather, it is forced to be the opposite value because of the recent conflict. It is
a redundant implication not explicitly visible from the original formula. Adding
the new clause to the database is a learning process that has been used in mod-
ern SAT solvers to prune future search space. Such learning can be carried out
in hardware by reserving some FPGAs for this purpose and generating new com-
pilations during runtime.

29.4.2 Performance

The performance of the new design is shown in Table 29.2. Tt should be noted
that the table lists the cycle counts, but the clock rates of the two designs
are different. The new design has a regular structure, and communication is
pipelined. It is therefore easy to achieve a much higher clock rate. Based on
the same Xilinx XC4000 FPGAs, the earlier design, implemented on the IKOS

1 will be

slication, -

is. If so,

of other °

1€ values

implied,
1 turn be

t has the)

e to it.

a free

e first
cation.
serforms
no new
then

ding to
it

When a

and, that
1.

contribu-
1ing vari-
is stored
‘or exam-
sw clause
nplied to
decision.

flict. It is .

irried out

new CoIn:

bé noted :

3 designs
ication is

Based on
the IKOS

29.4 A Different Approach to Reduce Compilation Time 631

TABLE 29.2 m Performance compariscn

Acceleration of new Acceleration of new

design without added design with added
Prohlem clauses clauses
aim-50_2_0-yes1-2 33.00 65.87
aim-200-6_0-yes1-1 1.32 3.66
aim-50-1_6-no-1 8.10 487.19
aim-50-2_0-no-1 495) 2449.26
aim-50-2_0-no-4 13.89 . 1121.68
aim-100-1_6-yes1-1 20.57 ' 4354.04
aim-100-3_4-yes1-4 2.81 10.58
hole7 463 4.63
holed 3.95% 3.85
hole9 3.46 3.46
par8-1-c¢ 5.03 5.03
parlé-1-c 1.29 1.29
pret60-_40 4,05 2154.23
55a0432-003 0.65 2.04

Note: The comparison is based on normalized speedup against the old
design, assuming 20 x clock speed improvement in the new design.

Logic Emulator, achieved a 1- to 2-MHz clock rate. The new design could
easily achieve a 20-MHz clock rate in 1998. In 2006, the achievable clock rate
was in the range of 200 MHz. This shows that the new design will likely achieve
better performance even without added clauses. Still, added clauses can bring
dramatic improvement in many problems.

29.4.3 Implementation Issues

One of the objectives of the new design is to reduce compilation time by exploi-
ting its regular structure. However, typical FPGA tools use simulated annealing
or similar algorithms to place the components. They are not capable of uti-
lizing the regular structure automatically, and so a regular structure will not
yield faster compilation times, It is necessary to bypass the automated tool and
directly generate the system layout.

IBits is a tool set that allows direct programming of Xilinx FPGAs. It is an
application programming interface (API) to the Xilinx configuration bitstream
file that permits Java applications to dynamically modify Xilinx XC4000EX/XL
bitstream configurations quickly.

A two-step approach can take advantage of the JBits tool and effectively
reduce compilation time. The first step is to create a generic SAT solver tem-
plate mapped to the FPGAs. The second step is customization to modify the
configuration according to a specific problem instance. For each instance, only
the second step is needed to compile the SAT solver. It can be performed quickly
if the number of changes is small.

- 632

Chapter 29 » Boolean Satisfiability: Creating Solvers

The architecture described in the previous section is used with additiona]
constraints to minimize the custornization. At each pipelined stage of the byg,
multiple clause modules are connected to the bus. By limiting the problem
formulation to 3-SAT, all clause modules are the same. The only difference ig
the variable identification of these three variables and the bus connection. The
variable identification is expressed as a constant that can be programmed as 3
ROM that feeds a comparator. The connection to the bus also depends on the
variable identity and polarity.

The points where a clause module wire interconnects with the bus wire should
be programmed in the second step. Another simple constraint, that each bus
wire connect to no more than one clause module can be met with a simple
greedy assignment algorithm.

The complete methodology to create an SAT solver is as follows:

1. Design of a single clause module. An SAT clause module is designed in
VHDL. The synthesized netlist is further optimized manually. The design
is expressed by schematic capture, which provides a more direct corre-
spondence between design and implementation.

2. Placement and routing of the module in a bounding box. Placement
constraints/floorplanning sets the bounding box of the clause module. The
Xilinx tool automatically places and routes within the bounding box.

3. Manual improvement, The Xilinx EPIC tool provides a graphical user inter-
face to manually edit the placement and routing on the FPGA.

4. Solver generation. With the bounding box constraints, a sample SAT solver
is generated. Additional manual editing creates a regular layout.

5. Template extraction. The JIBits tool reads the configuration bitstream and
identifies the modification points. :

6. Java generator. The SAT solver generator is created in Java with the JBits
library and templates.

7. Instance-specific biistream. The SAT solver generator is run with the prob-
lem instance, and the bitstream files are created.

8. Load/run. The programming is loaded to the FPGAs and the solver is run.

Only steps 7 and 8 are needed for each problem instance. For this reason, the
compilation time is reduced from hours to merely seconds compared to the logic
emulator implementation.

The target implementation is the Xilinx XC4036EX FPGA. Each FPGA con-
tains 36 x 36 CLBs, and each clause module takes 4 x 16 CLBs. Sixteen clauses
are placed in each FPGA. Each FPGA forms a stage of the pipeline, and multiple
FPGAs can form a ring. The Sun Java 1.1.7 tool is used to compile and run the
Java program. The host computer is an Intel Pentium Pro running Microsoft
NT 4.0. The CPU clock rate is 200 MHz, and the main memory is 128 MB.

Table 29.3 shows the performance comparison, with times given in seconds.
The Old Hardware and New Hardware columns include the time to create
the FPGA mapping (CAD) and the time to find the solution on the hardware
engine (HW). Numbers in parentheses are speedups as compared to the GRASP
software.

 the JBits’

idditional

f the bus,
. problem °
ference is*
stion. The ::
imed as a
ds on the

ire should :
each buys :
a simple_ i

signed in
he design.

3¢t corre-

lacement
dule. The -

box.
1ser inter-

AT solver

-eam and

the prob;

er is run.

ason, the

the logic

GA con-
n clauses

multiple -

1 run the
vlicrosoft
MB.

seconds.
to create
1ardware
= GRASP

29.5 Discussion 633

Tahle 29.3 ™ Performance comparison between the standard GRASP software and two
versions of the hardware SAT solver :

GRASP 0ld hardware New hardware
Problem sw CAD HW Total CAD HW Total
ab0-2_0yl-2 0.05 10783 0.0011 10783 1.9 0.0004 19 (<1x)
. (45x) (125x)

al00-2_0-yl-4 894 89530 42 (21x] 89572 2.4 9.7 (92x) 12.1 (74%)
a200-6_0-y1-1 128 >100K 1.35(94x) >100K 7.9 0.89 (144x) 8.8 (14x)

dubois20 286 11377 70.8 (14x) 11447 23 8.44 (117%) 10.7 (92%)

par8-1-c 0.02 12834 0.000011 12834 2.7 0.000035 2.7 (<1
(1818x%) (5671x)

parl6-1-c 202 83191 1.3 (155x 83192 94 22(92x) 11.6 (170

pret60_40 705 12396 18 (391 12414 2.3 S (78% 11.3 (62x)

Geometric 75.6% <1x (134x) (4.14x) (27.6x

Mean speedup

problems only)

29.5

DISCUSSION

Many groups have demonstrated that reconfigurable computing, compared to
software, can achieve speedups of about 100 times in solving SAT problems.
The main reasons are massive parallelism and fine-grained operation due to cus-
tomized hardware. Software/hardware solutions have been explored to reduce
hardware complexity and allow larger problems to be solved. A recent survey of
these systems is presented by Skliarova and Ferrari [15].

In each of the software/hardware systems, the massive computation to find
unit resolutions/implications and conflicts is the target of hardware acceleration.
However, there are several differences among these SAT solvers:

s Algorithms. The base algorithms are different. Several of them are based
on backtracking similar to that of GRASP. Some use a full variable
assignment and employ flipping during the search. Some use matrix
representations.

» Logic engine implementation. Different styles are used to implement the
massively parallel engine. Some use circuit translation, where the SAT
formula is translated into logical circuits. This means that the FPGA
configuration must be compiled for each problem instance, which is slow.
Alternatively, the formula is translated into memory, often distributed
into small blocks, which can avoid the compilation time.

m HW/SW organization. Some implementations are all hardware, where
the entire solver is mapped onto one or multiple FPGAs. Some imple-
mentations are SW/HW, in which part of the problem is handled by
software.

Chapter 29 = Boolean Satisfiability: Creating Solvers

While there has been significant progress in reconfigurable SAT solvers, we do
not see them replacing software solvers in real applications for several reasons;

» The need for flexibility. The SAT problem is NP-complete—that is, the
worst case is assumed to be exponential to the problem size. However,
sophisticated heuristics make many large problems solvable in practice.
Modern software SAT solvers typically contain many heuristics and allow
the user to choose different heuristic combinations to tackle espectally
hard problems. Reconfigurable solvers generally have only a few
heuristics, and there is little flexibility on which ones to use.

» Algorithm efficiency. Most reconfigurable SAT solvers have algorithm
efficiencies similar to that of the basic backtrack algorithm with some
simple heuristics. In the meantime, software algorithms have made
significant efficiency gains. More elaborate analysis, such as condlict
analysis, leads to more efficient backtracking and learning. Learning can
improve SAT solver speed by several orders of magnitude. Reconfigurable
SAT solvers generally lag in algorithm sophistication.

The scalability of hardware. The implementations of reconfigurable SAT
solvers are generally limited to moderate-size problems. However, large
problems are more likely to benefit from hardware acceleration.

Many projects have designed Boolean satisfiability solvers with reconfigu-
rable computing. These projects demonstrate the performance potential of these
solvers through fine-grained custom hardware and massively parallel process-
ing. Significant progress has been made in software algorithms as well, and
recently, reconfigurable computing solutions have not kept up in incorporating
these innovations. This is partly because the tools for reconfigurable computing
are not yet mature. T

Future research may result in a breakthrough by studying these issues:

» Hardware/software solution. The complex algorithms are difficult to
implement and verify in bardware. It is more efficient to partition the
problem and allocate only the massively parallel portion to the
reconfigurable hardware. With microprocessors embedded in FPGAs,
such as Xilinx Virtex-II Pro and Virtex-4, communication between the
processor and the FPGA is greatly improved. The proliferation of
multicore processors and high-bandwidth interconnects enables the
exploitation of parallelism at different levels with heterogeneous
processing technologies. : ' o
System-level design and synthesis methodologies. Models of computation
that preserve concurrency can be mapped to heterogeneous multicore
architectures. The designer can decide the trade-off between parallelism
and hardware usage. FPGA-based fabrics provide the massive parallelism
and low-level customization, while other components, such as embedded
processor or controller; can be chosen for their desirable characteristics.
Distribution of data and customization of hardware. Mapping SAT
formulas to FPGA circuits generates random routing and requires long
compilation times. Mapping problem instances into distributed memory

rers, we do
al reasons:

s, the
owever,
practice.
and allow
secially
A

ithm

1 some
1ade

Hlict
‘ning can
nfigurable

ble SAT
er, large

reconfigu-
al of these

2l process-
well, and

orporating
somputing

sues:

tto
on the

PGAs,

en the
of
i the

3

yutation
ticore
rallelism
arallelism

mbedded

steristics.
T -
es long .

memory -

29.5 Discussion 635

blocks can solve the time issue but it forces some degree of sequential
access. Learning from the design of content addressable memory may _
lead to hardware architectures better able to solve SAT and other Boolean -
problems.

Simultaneous exploration of multiple states. Creating an algorithm

that can efficiently explore multiple states in the assignment space
simultaneously will allow the utilization of large amounts of computing
resources. A simplified approach is to simultaneously run the search on
multiple machines with different heuristics. However, efficient utilization
of learning across different searches remains an open problem.

References

(11
[2]
(31

[4]
[5]
Q)
[71
8]
9]
[10]

[11]
[12]

[13]

[14]

T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithims, MIT Press,
1990.

T. Larrabee. Test pattern generation using Boolean satisfiability. JEEE Transactions
on Computer-Aided Design 11, January 1992.

A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic model checking without BDDs.
Proceedings of the Worlshop on Tools and Algorithms for Analysis and Construction
of Systems (TACAS) 1579, LNCS, 1999,

A. Gupta, M. Ganai, C. Wang, Z. Yang, P. Ashar. Learning from BDDs in SAT-hased
bounded model checking. Proceedings of the Design Automation Conference, 2003,
M. Davis, H. Putnam. A computing procedure for quantification theory. Journal of
the ACM 7, 1960.

J. P. Marques-Silva, K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability, IEEE Transactions on Computers 48(3), May 1999.

R. J. Bayardo Jr, R. C. Schrag. Using CSP look-back techniques to solve real-
world SAT instances. Proceedings of the 14th International Conference on Artificial
Intelligence, 1997.

E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-solver. Design, Automation
and Test in Europe, 2002. :

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering
an efficient SAT solver. Proceedings of the 38th Design Automation Conference, 2001.
P. Zhong, M. Martonosi, P. Ashar, S. Malik. Using configurable computing to accele-
rate Boolean satisfiability. JEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 18(6), June 1999.

P. Zhong, P. Ashar, 8. Malik, M. Martonosi. Using reconfigurable computing tech-
niques to accelerate problems in the CAD domain: A case study with Boolean
satisfiability. Proceedings of the 35th Design and Automation Conference, June 1998.
P. Zhong, M. Martonosi, P. Ashar, S. Malik. Accelerating Boolean satisfiability with
configurable hardware. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, April 1998. - ‘

P. Zhong, M. Martonosi, P. Ashar, S. Malik. Solving Boolean satisfiability with
dynamic hardware configurations. Proceedings of the Eighth International Work-
shop on Field-Programmable Logic and Applications: From FPGAs to Computing
Pgradigms, August-September 1998.

P. Zhong, M. Martonosi, P. Ashar. FPGA-based SAT solver architecture with near-
zero synthesis and layout overhead. IEE Proceedings on Computer and Digital Tech-
nigues 147(3), May 2000.

636

~ Chapter 29 = Boolean Satisfiability: Creating Solvers

[15]
[16]

[17]
[18]

f19]

[20]

[21]
[22]
[23]
{241

[25]

[26]

(27]

[28]

[29]

I Skliarova, A. B. Ferrari. Reconfigurable hardware SAT solvers: A survey of
systems. IEEE Transactions on Computers 53(11), November 2004,

M. Yokoo, T. Suyama, H. Sawada. Solving satisfiability problems using fielq.
programmable gate arrays: First results. Proceedings of the Second Internationg]
Conference on Principles and Practice of Constraint Programming, 1996.

T Suyama, M. Yokoo, H. Sawada, A. Nagoya. Solving satisfiability problems using
reconfigurable computing. IEEE Transactions on VLS Systems 9(1), 2001.

T. Suyama, M. Yokoo, A. Nagoya. Solving satisfiability problems on FPGAs using
experimental unit propagation. Proceedings of the Fifth International Conference op
Principles and Practice of Constraint Programming, 1999.

T. Suyama, M. Yokoo, H. Sawada. Solving satisfiability problems using logic syn-
thesis and reconfigurable hardware. Proceedings of the 31st Hawaii Internationg]
Conference on System Sciences 7, 1998, _

J. de Sousa, J. P. Marques-Silva, M. Abramovici. A configware/software approach
to SAT solving. Proceedings of the Ninth IEEE International Symposium on Field.
Programmable Custom Computing Machines, 2001.

L Skliarova, A. B. Ferrari. A software/reconfigurable hardware SAT solver, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 12(4), April 2004,

J. Gu. Local search for satisfiability (SAT) problem. IEEE Transactions on Svystems,
Man, and Cybernetics 23(4), July 1993, .

H. Zhang, M. Stickel. An efficient algorithm for unit-propagation. Proceedings of the
Fourth International Symposium on Artificial Intelligence and Mathematics, 1996,
H. Zhang. SATO: An efficient propositional prover. Proceedings of the Internationa]
Conference on Automated Deduction, 1997. ~

L. Zhang, S. Malik. The quest for efficient Boolean satisfiability solvers. Proceedings
of the Eighth International Conference on Computer-Aided Deduction; Proceedings of
14th Conference on Computer-Aided Verification, July 2002.

L. Zhang, S, Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. DATE2003, March
2003.

F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah. Solving difficult instances of
Boolean satisfiability in the presence of symmetry. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systerns 22(9), September 2003.

P. T. Darga, M. H. Liffiton, K. A, Sakallah, I. L. Markov, Exploiting structure in
symmetry detection for CNF. Proceedings of the 41st IEEE/ACM Design Automation
Conference, 2004. _

Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, I. L. Markov. AMUSE:
A minimally-unsatisfiable subformula extractor. Proceedings of the 41st IEEE/ACM
Design Autormation Cownference, 2004.

	Chapter 29_1-10.pdf
	Chapter 29_11-20
	Chapter 29_21-end

